Different Theories That Attempt To Describe and Explain The Universe

Posted by on Dec 1, 2016 in Writing Assignment 6 | No Comments

Many scientists have attempted to explain the universe we reside in through many different theories. None of them are absolute of course, but some tend to be more believable than others. While there is no definite evidence that fully supports any single theory, based on what we see so far, we can only assume that one is correct depending on how the theory’s intricacies match up to and are in accordance with mathematical equations that describe the governing laws of physics. Many theories and models can be explored, with the prevalent ones being the multiverse theory, Quantum Field Theory, the Anisotropic model, and the currently accepted, Big Bang Theory.

One of these theories consists of an anisotropic model of the universe. This model explores a role “in the study of cosmic highly excited strings in the early universe” (Sepehri et al., 2015). These strings mentioned became an important part to this theory because they were supposedly created during the phase transition after the Big Bang explosion, with the temperature lowering, with them “then decay[ing] to standard model particles at the Hagedorn temperature” (Sepeheri et al., 2015). Essentially the theory shows that vector string tachyons, a big rip singularity, control the expansion of the anisotropic universe, whilst shifting from the non-phantom phase to the phantom phase with the phantom-dominated era of the universe accelerating and ending up in a big rip singularity (Sepehri et al., 2015).

Another theory, Quantum Field Theory, asserts that quantum fields propagate on a classical background, defining quantum phenomena “in a regime where the quantum effects of gravity do not play a dominant role, but the effects of curved spacetime may be significant” (Tavakoli and Fabris, 2015). This theory of quantum fields becomes invalid in classical curved spacetime, with regimes arbitrarily close to the classical singularities. Here the spacetime curvatures become extremely small, relative on Planckian scales and so the quantum effects of gravity are no longer negligible (Tavakoli and Fabris, 2015). This theory is explained through many complex mathematical equations and finds some foothold as a plausible theory explaining the creation of particles in a cyclic universe.

A microgravity environment for the central nervous system allows us to explore the beginnings of mankind, in a purely theoretical sense. While this article doesn’t primarily discuss the origins of the universe, it relates to the beginnings of mankind and draws a connection to the universe. The connection is made with simply the limbic system, with connections between the brainwaves, oscillations and our soul, with the soul being our origin and the greater limbic system being the seat of the soul. The article asserts that everything moves in a wave-like pattern, where everything is oscillating, and this idea is related to parts of the human bodies that create wave-like oscillations, such as “brain waves, heart rate, blood pulsation, and pressure, respiration, peristalsis for most living creatures and oscillations or waves for the whole of the universes contents” (Idris, 2014). These relations highlight the basis of this theory, which has more to do with similarities as opposed to mathematical logic and proofs.

One of the better-known theories proposed is the theory of the multiple universes, in which an infinite number of universes exist that accommodate all possible scenario of events, called the multiverse theory. The theory presents a “many-worlds view, in which all possible outcomes of a quantum measurement are always actualized, in the different parallel worlds, and a one-world view, in which a quantum measurement can only give rise to a single outcome” (Aerts & Bianchi, 2014). This is made possible by many quantum measurements happening frequently, thus allowing for multiple pictures. This theory draws some basis from the equations from quantum theory that describe waves, however the multiverse theory assumes an illusion of just one image being created by the results of quantum theory (Vaidman, 2015).

Currently there are many theories and attempts being made to describe the universe, but they are immensely difficult to explain and involve many intricacies. Even with all the specificities of each theory, most fall short in some aspect and due to the lack of complete knowledge, we cannot fully accept a theory. The Big Bang Theory explains many of the phenomena we have come to known and understand and explains them well according to our knowledge thus far, but we cannot fully accept it yet. For the time being however, it is the currently accepted theory.

 

Figure 1. Numerical solution for the scale factor of the universe represented as a graph. Oscillatory behavior is shown for the scale factor in the whole evolution of the universe (Tavakoli & Fabris, 2015).

Figure 1. Numerical solution for the scale factor of the universe represented as a graph. Oscillatory behavior is shown for the scale factor in the whole evolution of the universe (Tavakoli & Fabris, 2015).

Works Cited

Aerts, Diederik, and Massimiliano Sassoli de Bianchi. “Many-Measurements Or Many-Worlds? A Dialogue.” Foundations Of Science 20.4 (2015): 399-427.

Idris, Zamzuri. “Searching For The Origin Through Central Nervous System: A Review And Thought Which Related To Microgravity, Evolution, Big Bang Theory And Universes, Soul And Brainwaves, Greater Limbic System And Seat Of The Soul.” Malaysian Journal Of Medical Sciences 21.4 (2014): 4-11.

Sepehri, Alireza, Anirudh Pradhan, and Hassan Amirhashchi. “Removing The Big Rip Singularity From Anisotropic Universe In Super String Theory.” Canadian Journal Of Physics 93.11 (2015): 1324-1329.

Tavakoli, Yaser, and Júlio C. Fabris. “Creation Of Particles In A Cyclic Universe Driven By Loop Quantum Cosmology.” International Journal Of Modern Physics D: Gravitation, Astrophysics & Cosmology 24.8 (2015): -1.

Vaidman, Lev. “The Emergent Multiverse: Quantum Theory According To The Everett Interpretation.” British Journal For The Philosophy Of Science 66.2 (2015): 465-468.

Leave a Reply