Memo 3: Annotated Bibliography, Vertical Farming

1. Cox, Stan, and David Van Tassel. “‘Vertical farming’ doesn’t stack up.” Synthesis/Regeneration, 2010.

In this source, the authors begin to describe Dickson Despommier’s concept of vertical farming as a proposal to substitute soil-based agriculture with a system of manufacturing food crops in tall urban buildings to grow crops indoors, under meticulously controlled conditions, in vertical farms. This idea develops out of the apprehension that there is not enough bare horizontal planes available in most urban areas to harvest the magnitudes of food required to feed urban populations. Cox, Stan, and David then go on to point out that if vertical farming were achievable, it would only push the dependence of food production on industrial inputs to even greater heights, rather than solve any agricultural concerns. In systems of vertical farms, the crops are being deprived of soil as well as sunlight, the most plentiful energy source of them all. The authors explain that plots of crops cannot be layered one level above the other without providing a substitute for the sunlight that has been cut off by the ceilings and walls, so the majority of the light used in the farms would have to be supplied artificially consuming resource-intensive power rather than open and plentiful free sunlight. Based on their calculations, to manufacture wheat in the US for one year, vertical farming would obligate eight times as much electricity as all US utilities generate in one year, just for lighting and producing artificial sunlight for the wheat. They then proceed to discuss the additional energy requirements involving climate control in order to achieve suitable growing conditions.

In this source, Cox, Stan, and David provide very clear and unfavorable information and statistics related to the energy consumption required for vertical farming to be feasible. This source can be useful to my research because it is important that I am aware of not only the positive outcomes produced by vertical farming, but of the many detrimental downsides of the idea. This article called attention to several expenses to be incurred when undergoing the vertical farming process that hadn’t been brought to light in previous articles I have read, such as the high energy cost of humidity and air circulation, the inconveniences and energy requirements for producing and carrying artificial growth media, fertilizers, water and other resources, thirty or so stories up and getting harvests out of the towers and bringing them back those thirty stories down, and the stake of manual labor called for. This information can be useful when considering whether the advantages brought about by vertical farming are worth all of the extra expenses and obligations that come along with it.

2. Despommier, Dickson, The Vertical Farm: Feeding The World In The 21st Century. New York Thomas Dunne Books, 2010.

In this book the author, Columbia professor, Dickson Despommier, introduces his idea of vertical farming to solve America’s food, water, and energy crises. He explains that moving our agricultural systems into high-rise city buildings would renovate the way we grow fruit, vegetables, poultry, and fish, and lighten many of the intense environmental problems we are currently facing. In his book, Despommier stresses the beneficial outcomes of vertical farming including the ability to cultivate food 24 hours a day, 365 days a year, the opportunity to protect crops from unpredictable and destructive weather, to recycle and reuse water gathered from the indoor environment, increase the availability of jobs for local inhabitants, excludes the use of pesticides, fertilizers, and other harmful chemicals, reduces dependence on fossil fuels, prevents crop loss due to disease, and stops agricultural runoff. He introduces several different feasible designs for the vertical farm providing stunning illustrations and sketches of the designs, such as the “VF Type O,” proposed by Oliver Foster which takes the shape of a cylinder, the “Pyramid Farm,” proposed by Eric Ellingsen and Dickson, which blatantly takes the shape of a pyramid, and the “Aberrant Agriculture,” proposed by Scott Johnson which forms almost a dome shaped greenhouse.

The Vertical Farm: Feeding the World in the 21st Century, by Dickson Despommier contains the basic structure of my research, as the creator of the vertical farming concept gives a detailed and illustrated interpretation of his idea, sharing his thoughts and insights with readers. This source will be helpful when compiling my research because it hold the main purposes for vertical farming as well as the countless advantages that can be achieved if the system is implemented effectively and efficiently. This information is reliable and dictated by Despommier himself; therefore I will have accurate considerations and expectations regarding the vertical farming system.

3. Fletcher, Owen. “Innovations in Agriculture (A Special Report) — The Future of Agriculture May Be Up: Advocates of ‘vertical farming’ say growing crops in urban high-rises will eventually be both greener and cheaper.” Wall Street Journal. October 15, 2012.

In this source, the author Owen Fletcher introduces us to several examples of urban greenhouses developing throughout the world today. He mentions a twelve-story triangular building being constructed in Linkoping, Sweden, in which plants rotate on mechanical tracks from the top floor down to the ground floor taking full advantage of the sunlight while evenly distributing it in order to make harvesting simpler. He also discusses a three-story meatpacking plant in Chicago, in which vegetables are grown on floating rafts sustained by aquaponics, using waste from close by fish tanks for nutrients. Fletcher briefly goes over the benefits of vertical farming including apparent ones such as fewer delivery trucks consuming gas and emitting exhaust and simplified access to fresh, healthy food for city residents; as well as less obvious ones including reducing the use of pesticides, preserving more natural ecosystems to help slow climate change, and the less vulnerable we are to environmental catastrophes that disturb crops and send prices skyrocketing. He then goes on to mention a few unique farming methods used across the country implemented to save space, diminish water consumption, and avoid the need for soil. He also provides core arguments against vertical farming including opposing opinions by agricultural experts who aren’t convinced growing food indoors is simpler and more efficient than conventional farming.

This source provides useful information that supports the possibility of vertical farming as it draws from examples of urban greenhouses implemented across the world. The actual existence of the structures discussed by Fletcher in his report prove that the idea isn’t farfetched and that it is possible to employ such a vertical farm here in one of the many towering skyscrapers of New York City. This source is valuable because it is unbiased, as Fletcher considers the many benefits that can arise from vertical farming and the appraisals the idea has received as well as the critiques made by those who argue that vertical farming expends more effort, energy, and expense than the easier and more efficient method of conventional farming.

4. Murray, Peter. “Towers Of Vegetables Go Up As Singapore Builds First Vertical Farm.” Accessed March 18, 2013. http://singularityhub.com/2012/11/05/towers-of-vegetables-go-up-as-singapore-builds-first-vertical-farm/.

In this source, the author Peter Murray discusses the first erected vertical farm constructed in Singapore, called A-Go-Gro, which was created by the company Sky Green. The system consists of a series of aluminum towers, up to 9 meters high, with troughs where the vegetables are grown, which are rotated using a hydraulic water-driven system to ensure that all the crops receive equal distributions of sunlight. A-Go-Gro will produce 3 types of vegetables, producing an estimated 1-ton of vegetables every other day which are sold in local supermarkets. The production yield of the A-Go-Gro system is 5 to 10 times more per unit area compared to traditional farms while the greenhouses facilitate year round production protected from pests, winds, and floods, and producing consistent and reliable harvests.

This source is useful towards my research paper because it records the application of a vertical farming system that produces many benefits to its local residents and no obvious disadvantages. A-Go-Gro is a model farming system demonstrating that farming vertically is possible to be preserved at low energy and water usage, while working with nature to achieve sustainability. Patented low carbon hydraulic green technology is used to power the rotation of the towers at very low energy costs while the troughs are irrigated using an innovative flooding method, using very little water; so they are maintaining environmentally friendly technologies. The A-Go-Gro system proves that by using minimal land, water, and energy resources, we can use green urban solutions to achieve enhanced production of safe, fresh, and delicious vegetables.

5. Platt, Peter. “Vertical Farming: An Interview with Dickson Despommier.” Gastronomica: The Journal of Food and Culture 7 (2007): 80-87. Accessed March 18, 2013.
http://www.jstor.org/stable/10.1525/gfc.2007.7.3.80 .

In this source the author, Peter Platt, is interviewing Dickson Despommier, the father of the vertical farming concept. He reveals that the idea of vertical farming was essentially conceived in 2001 as a class project when Despommier inspired his medical ecology class to “think globally and act locally” in New York City. Despommier expresses the limitless amount of plants that are capable of being grown indoors, considering the parameters necessary for growth are met. Various kinds of different and exotic crops would be grown inside these vertical farms, such as fruits and vegetables ranging from bananas and coconuts, to corn and wheat, so that we would be able to exceed consumer demand with such a variety. Despommier goes on to explain the positive effects vertical farming can produce such as restoring the hardwood forests that were sacrificed in favor of crops, while planting trees to be available for the re-absorption of CO2 from the atmosphere in the form of carbon reserves. He also demonstrates the potential dangers and risks of vertical farming and how these hazards can be mitigated, as he stressed the importance of surveillance and security in order to ensure no diseases spread throughout the farm. The water recycling process was also discussed, where Despommier explains that untreated human sewage is the initial source of energy for plant life. The system depends upon the capture of transpiration at each floor level of the farm.

This source provides a detailed and authentic interpretation of the concept of vertical farming, as it is expressed and analyzed by the creator of the idea himself, Dickson Despommier. I intend to use this source to assist me in my research paper with the clarification of the process of vertical farming including the origins of the idea and the process that is followed, as well as the main purposes it aims to serve and the benefits it seeks to produce for the environment. Not only does Despommier outline the positive outcomes of the idea, but he also points out the possible negative consequences of vertical farming, accepting that there are flaws to be found in just about any organized system, and suggests methods of mitigating or avoiding these dangers and risks. Despommier projects that a vertical farm of thirty stories and one square city block producing commercially available products such as produce, poultry, fish, and shellfish, after all expenses are paid, would end up with 80 million dollars profit. Such calculations about the parameters and profits suggest that a vertical farm in New York City can exist in reality, creating an image in our minds of a soaring tower of forests in the future of our own city.

This entry was posted in Annotated Bibliography. Bookmark the permalink.