

of New York

RESEARCH QUESTION:

How will average winter and summer temperatures vary between urban and non urban areas?

METHODOLGY

- Using the data from the National Centers for Environmental Education, taken from the City Times Series.
- Selected densely populated urban cities and corresponding rural areas along similar latitudes
- Gathered the necessary temperature data for the summer and winter seasons in the years 1992-2022 and sorted on Excel

LITERATURE REVIEW

- Researchers found an urban heat island (UH effect in NYC but no park cooling effect (Gaffin et al., 2008)
- Different street landscapes in NYC had different nighttime temperatures (Shaker et al 2019)
- There are 3 major models for studying UHI, o which city-scale models are most useful for ou research (Mirzaei, 2015)

The City College TEMPERATURE CHANGE IN URBAN AREAS AND **NON-URBAN AREAS** Sam Berkowitz, Gaurav Gupta, Ada Liu, Victoria Lu

CONCLUSIONS enough evidence for us to say that urban Il sample sizes limits our progress here.

	• Regarding rates of change, there was not e
(I)	areas have higher rates of change; the small
	Further research with bigger sample size c
	• Regarding temperatures, it's clear that urb
	different temperatures. The t-test for Mass
1.,	• There is a statistically significant difference
	temperatures even though they follow a sin
of	the winter time
ur	• Limitations: could not find data for exact le
	exact locations ex: Essex County.

RESULTS

Statistical Testing:

t-Test: Paired Two Sample for Means		
winter		
	Urban	Less Urban
Mean	0.077666667	0.066066667
Variance	5.32333E-06	0.000111323
Observations	3	3
Pearson Correlation	-0.165204221	
Hypothesized Mean Difference	0	
df	2	
t Stat	1.799296786	
P(T<=t) one-tail	0.106891822	
t Critical one-tail	2.91998558	
P(T<=t) two-tail	0.213783644	
t Critical two-tail	4.30265273	

- could change this conclusion. an areas and non-urban areas have
- sachusetts data proves this.
- e between Central Park and LGA
- milar pattern and are very similar during

ocations we wanted; difficulty pinpointing

Chakraborty, Hsu, A., Manya, D., & Sheriff, G. (2020). A spatially explicit surface urban heat island database for the United States: Characterization, uncertainties, and possible applications. ISPRS Journal of Photogrammetry and Remote Sensing, 168, 74-88. https://doi.org/10.1016/j.isprsjprs.2020.07.021

Gaffin, S., Rosenzweig, C., Khanbilvardi, R. et al. Variations in New York City's urban heat island strength over time and space. Theor Appl Climatol 94, 1–11 (2008). https://doi.org/10.1007/s00704-007-0368-3

Mirzaei, P. A. (2015). Recent challenges in modeling of urban heat islands. Sustainable Cities and Society, 19, 200–206. https://doi.org/10.1016/j.scs.2015.04.001

NOAA National Centers for Environmental information, Climate at a Glance: City Time Series, published November 2023, retrieved on November 18, 2023 from https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/city/time-

Shaker, Richard R., et al. "Investigating Urban Heat Island through Spatial Analysis of New York City Streetscapes." Journal of Cleaner Production, vol. 233, Oct. 2019, pp. 972–92. ScienceDirect, https://doi.org/10.1016/j.jclepro.2019.05.389.

MACAULAY HONORS COLLEGE

y = 0.1078x + 71.90 $y = 0.0532x + 65.11$ $y = 0.0556x + 47.9$ $y = 0.0767x + 32.5$ $y = 0.0767x + 32.5$		
y = 0.0532x + 65.11 $y = 0.0556x + 47.9$ $y = 0.0767x + 32.$ $y = 0.0767x + 32.$		y = 0.1078x + 71.907
y = 0.0532x + 65.11 $y = 0.0556x + 47.9$ $y = 0.0767x + 32.4$ $y = 0.0767x + 32.4$	•	•
y = 0.0532x + 65.11 $y = 0.0556x + 47.9$ $y = 0.0767x + 32.3$ $y = 0.0767x + 32.3$		
y = 0.0556x + 47.9 $y = 0.0767x + 32.3$ $y = 0.0767x + 32.3$	•	y = 0.0532x + 65.116
y = 0.0556x + 47.9 $y = 0.0767x + 32.3$ $y = 0.0767x + 32.3$	• •	
y = 0.0556x + 47.9 $y = 0.0767x + 32.3$ $y = 0.0767x + 32.3$		
y = 0.0767x + 32.5		y = 0.0556x + 47.95
y = 0.0767x + 32.5	•	•
012 2012 2013 2014 2015 2016 2011 2018 2019 2020 2021	• •	y = 0.0767x + 32.303
012 2013 2014 2015 2016 2017 2018 2019 2020 2021		
	1012 2013 2014 2015 2016	2027 2028 2029 2020 2027 2027
Sonoma County Summer	Sonoma County Sum	imer
Linear (San Francisco Winter)	···· Linear (San Francisco	winter)

summer		
Solution		
	Urban	Less Urban
Mean	0.096167	0.0791
Variance	0.000111	0.000751
Observations	3	3
Pearson Correlation	-0.952591	
Hypothesized Mean Difference	0	
df	2	
t Stat	0.786175	
P(T<=t) one-tail	0.25706	
t Critical one-tail	2.919986	
P(T<=t) two-tail	0.51412	
t Critical two-tail	4.302653	

REFERENCES