Memo 3: Annotated Bibliography for PSD’s and Flooding

To: Professor MacBridge

From: Christopher Chang

Date: 04/13/2013

Re: Subway Platform Screen Doors and Flooding.

1. Chung, Hang Jae. “SMRT’s Platform Screen Door & IT Technology,” March 18, 2013. http://www.apta.com/mc/fctt/previous/2010tt/Presentations/SMRT-Platform-Screen-Door-and-IT-Technology.pdf.

This PowerPoint talks about the Platform Screen Doors for the Seoul Metropolitan Rapid Train line. It dives into the statistics of Seoul’s metro lines and those that have Platform Screen Door’s. Chung talks about some of the benefits of the Platform Screen Door’s such as decreases in accidents per year, air contamination, Heating Ventilation and Air Conditioning (HVAC) energy consumption and ambient noise. Air contamination is an important aspect of the Platform Screen Door’s because of the fact that subways are underground. Because of rain and water run off, molding of walls underground is more rampant than above ground. Also, when there are putrid smells such as fumes from track fires, the smell lingers in the tunnels underground. The PowerPoint goes as far as showing us how to actually put together the Platform Screen Door’s underground. An interesting point the PowerPoint includes is the fact that other business can actually benefit from Platform Screen Doors. The Platform Screen Door’s are mostly viewed as a safety measure against train deaths. But, they can also have billboards or advertisements on them. Businesses can pay to have their advertisements on either the walls or the Platform Screen Door’s, which is usually where most subway riders are facing anyways.

The main reason for choosing this PowerPoint is because it was relevant to connecting South Korea’s direction on subway Platform Screen Doors and the MTA’s constant talks of installing them. This PowerPoint actually served as a way to draw in investors. When reading the PowerPoint, I realized that the Platform Screen Doors could provide more than just safety. They can make being underground a healthier stay. With 1.9 billion passengers in 2009, South Korea can be considered a metropolis with a bustling transportation system. Obviously, New York City’s MTA has a much larger number of passengers. But, the fact of the matter is, South Korea’s metro system is far superior in terms of speed, cleanliness and now, safety. One of the most interesting aspects is the fact that South Korea is a country that receives insane amounts of rain because of monsoons every single year. So, the fact that their subway system have the ability to be up and running after every single rainy day or week should raise alarms to the MTA on what they are doing wrong and how can they fix them. Platform Screen Doors can be a right start.

2. Geller, Adam. “New York City Flood Protection Won’t Be Easy.” Timesfreepress.com, November 27, 2012. http://www.timesfreepress.com/news/2012/nov/27/new-york-city-flood-protection-wont-be-easy/?breakingnews

Mr. Geller talked about a very viable option that a hospital in Houston took to prevent flooding. In 2001, tropical storm Allison ripped through Houston severely crippling the Texas Medical Center. As a result, the Texas Medical Center installed submarine type flood doors throughout their tunnel system. The second portion of this article goes into the actual damage that Sandy caused and what it has shed light on. After a flood in 2007 in New York City, MTA reportedly spent $157 million on many projects, one of them being “closing 1600 grates along a low-lying avenue in Queens.” The article goes on to talk about many other countries subway systems including Bangkok. Bangkok, a relatively bustling but a part of a third world country, has its station entrances, which are raised several feet above ground. The number of options that the MTA can take is plenty. The third portion of this article speaks about the electric grid in New York. Protecting the electric grid is very important because there were many customers without power during Sandy’s terror and well after Sandy hit. It was well televised about the elderly in apartments at Brighton Beach who were stuck in their apartments because of blackouts and the inability to make it down the stairs. In 2009, Edison Electric Institute reported “installing lines underground in urban areas could cost up to $23 million per mile, five times the cost of lines above ground.”

The question everybody needs to ask him or herself is how can we prevent another catastrophic storm from ravaging our lands again. It is without a shadow of a doubt that a storm with the same intensity, if not higher, will make its way through New York again. This article sheds light on the different actions we can take to prevent such damage. The importance of preventing this type of damage is paramount. It is 6 months after Hurricane Sandy hit and some people are still feeling the effects of the aftermath. Whether it be to install submarine like doors in all the underground stations to prevent flooding at the source or raising the station entrances, certain steps need to be taken to avert the damage we witnessed in October 2012. This article speaks volumes because it provides us with different options and breaks down some of the damage that Sandy has caused. It goes as far as talking about protecting neighborhoods. But, for the sake of this project, it doesn’t seem as important.

3. Metrobits. “Platform Screen Doors – Metrobits.org,” March 18, 2013. http://mic-ro.com/metro/platform-screen-doors.html.

Metrobits informational piece on Platform Screen Doors goes into many different lines that currently have been fitted with Platform Screen Doors. One of the most important parts of this informational to my research was the little summary on Saint Petersburg. Saint Petersburg was the first station to have a variation of the Platform Screen Doors. They installed Platform STEEL Doors between 1961 and 1972 in ten different stations. What is most interesting about this is that Metrobits goes on to state, “Contrary to common belief, the reason for the introduction of steel doors was not to prevent flooding.” Metrobits goes into depth with each of the stations in the world that have Platform Screen Doors. For the sake of my project, I focused more on the Korean stations and the New York stations. In Seoul, lines 2 and 9 have been fitted with Platform Screen Doors. It is planned that all the lines will have the doors by 2010. It is said that the New Second Avenue Line will have Platform Screen Doors in New York. It is expected to open in late 2016. Another great aspect of this document is the benefits it lists of Platform Screen Doors. Some of them include preventing track fires, reducing draught and air pressure caused by trains and preventing people from falling or jumping on the tracks.

The one sentence that had an impact on my research on Platform Screen Doors was the sentence about the introduction of steel doors. I had begun my research in hopes to find evidence that the Platform Screen Doors would be able to prevent flooding. But, this article was the first one that provided evidence against my hypothesis. Even though Metrobits uses the word Platform Steel Doors, they are a variation of Platform Screen Doors. It could be that the Platform Screen Doors are different in the sense that they can actually prevent flooding. But, at this point of my research, there is no evidence that point to it. The remainder of this document is very useful because it lists out which stations around the world have Platform Screen Doors and if they will be fitted with them. Finding out that the Second Avenue Line is expected to open with Platform Screen Doors leads me to believe that the MTA is actually making steps to prevent certain safety hazards, both physical and airborne. The benefits of Platform Screen Doors may not have been directly related to preventing floods underground. But, they have certain climate and health related benefits that I had not thought about before such as preventing track fires.

4. Kabak, Benjamin. “‘A Screen Door on a Submarine…’” Second Ave. Sagas, December 31, 2012. http://secondavenuesagas.com/2012/12/31/a-screen-door-on-a-submarine/.

Benjamin Kabak writes in a perspective dealing with Platform Screen Doors being a safety mechanism. With all of the homicides dealing with trains and people being pushed in, people have been looking closely at options to prevent these deaths. In December alone, there were two high profile cases where the victims were pushed into the tracks when a train was approaching. An alarming statistic was that there are usually 150 people per year that are hit by trains. According to the article, there have been many plans to install the doors in numerous stations. But, the plans keep on falling through. The article goes to talk about Crown Infrastructure, a New York based company, who would install Platform Screen Doors free of charge. The only condition would be that it would collect revenue from LED video advertising on the barriers of the Platform Screen Doors. The article goes on to talk about the 7-train extension and the new Second Avenue subway having Platform Screen Doors. An MTA spokesperson has stated that they are “cost-prohibitive” because it would cost an “estimated $1.5 million to install sliding doors along two platform edges in a new station and more to retrofit an existing station.” With 468 stations in the MTA system, it would be extremely costly.

Even though this article does not focus on the actual climate related benefits of Platform Screen Doors, it raises concerns on the financial liability of installing Platform Screen Doors. Taking a different approach with the safety concerns, the article touches upon different companies and people advocating for the doors. The architect of the JFK AirTrain advocates for the doors. But, the fact of the matter is, the JFK AirTrain is suspended above ground, which makes it a little easier to install and change things around as opposed to changing schematics underground. In regards to Crown Infrastructure, their plan is a little bit of a conundrum. Even though they may create revenues from the video advertisements, chance are there will be other companies that pay more for the advertisements. It is an uncertain situation and dishing out hundreds of millions of dollars for an uncertain investment panning out is definitely not the smart choice. The financial liability discussed in this article is very important in my research because one of the main reasons why the MTA isn’t going ahead with the proposed projects is funding. Also, retrofitting an existing station would cost more money depending on what kind of station it is too. All in all, financially, the Platform Screen Doors isn’t the smartest investment for New York City. But, in terms of health and safety, it is foolproof. It all boils down to how important health and safety is to the MTA.

5. Donohue, Pete. “MTA Exploring Using Inflatable and Expandable Devices to Seal Subway Tunnels and Prevent Type of Flooding That Crippled System During Sandy.” NY Daily News, November 26, 2012. http://www.nydailynews.com/new-york/mta-exploring-inflatable-expandable-devices-seal-tunnels-article-1.1208561.

Pete Donohue writes about a team of engineers at West Virginia University who have developed a viable option for any metropolitan subway system to use in their tunnels to prevent flooding. It is a giant tunnel plug made out of a synthetic fiber that is similar to Kevlar. According to Ever Barbero, the principal investigator with the Resilient Plug Project, “It could be inflated with air or water.” The greatest aspect of the inflatable plug may be the fact that it could be put away in an area about 2 by 3 feet when not inflated. This is about the size of a small box. The cost of such flood plug is estimated to be about $400,000 for the prototype. The plug had impressive results in four tests as it reduced the flow of water to a manageable level to be pumped out. All signs from the article points to the plug being an actual option to preventing flooding at an economical price and practical in terms of space.

This article provides an important alternative to preventing flooding. I went about my research in a two-pronged plan. The first prong was to find information on Platform Screen Doors and if it was able to prevent flooding. The second prong was to find any other alternatives that were flood proof. I did find a lot of information on Platform Screen Doors. But, for the most part, none of the information led me to believe that it was able to prevent flooding in stations. However, I was more successful finding viable alternatives to avert flooding in New York City subway tunnels. The submarine doors in a Houston hospital from an earlier article seemed like a great idea. But, in terms of installing and time, it wouldn’t be the most efficient option. The Kevlar like plugs may prove to be the quickest and most efficient barrier against flooding right now. If the prototype is improved and mass produced, then MTA would be able to store them away at each station, two per direction, and inflate them in periods of severe flooding. A step-by-step drawing shows a specific place that the plug can be placed without restricting train traffic.

6. New York Times. “Assessing Damage From Hurricane Sandy,” October 29, 2012. http://www.nytimes.com/interactive/2012/10/30/nyregion/hurricane-sandys-aftermath.html?_r=0.

The New York Times has an amazing article on the damage from Hurricane Sandy. He goes into depth on every single aspect of the damage including public transportation, water waste, elemental problems (fire, wind) and power failures. The article takes it a step further by including specific dates and their importance. For example, the article states October 31st as the first day to recovering the subway system. Their first step was getting the water out of the tunnels. The main focus were the stations that were in Zone A such as South Ferry station and Whitehall Street. The article also indicated which specific lines were at risk for flooding. They included the 2, 3, 4, 5, A, C, F and R trains. The number of customers affected by Hurricane Sandy in terms of power was startling. In areas of New Jersey, the number of people affected reached 500,000 and nearly 200,000 for areas in New York City. The article went on to talk about the flooding and water waste specifically to New York City. It depicted the areas of mandatory evacuation. What was especially interesting was the fact that all of the wastewater treatment plants were all in Evacuation Zones.

This article was important to my research because it took a closer look at Hurricane Sandy’s path of destruction. Hurricane Sandy opened the eyes of many New Yorkers and scientists in terms of the damage that was caused in an area that hadn’t seen much destruction from flooding in the past. This article touched upon almost every single aspect of the storm from the actual rain causing flooding, the roaring wind and the fires that were caused by the storm. This article puts a microscope into the problems that we faced after the storm and certain problems that we may continue to face. The maps of New York City with descriptions of many different problems such as Evacuation zones, areas of lowest elevation and wind speeds were really helpful. They gave a visual on which parts of New York City were most vulnerable to the different weather conditions. Obviously, the areas most vulnerable were the areas closer to water. But, the fact of the matter is that there were certain parts of New York City that weren’t safe from the destruction of Hurricane Sandy. In the Jamaica Queens, Evacuation Zone C stretched from the tip of Jamaica, past the Jamaica plant and almost into the middle of Queens. This article really shed light on the actual destruction of the storm, piece by piece.

7. Yakas, Ben. “MTA Exploring Installing Sliding Doors At L Train Stations.” Gothamist, January 13, 2013. http://gothamist.com/2013/01/13/mta_exploring_installing_sliding_do.php.

Platform Screen Doors may be coming to a L Train near you. In December 2012, the MTA considered installing sliding doors at L Train stations. This was due to many accidents; some intentional that was publically televised in December. The Post states, “Installing the doors system-wide would be more than $1 billion.” The article talks about the Second Avenue Subway having a proposal to add sliding doors from 2007. But, nothing has seemed to matriculate from this proposal. The article goes on to talk about how political pressures from the outside can make the Platform Screen Doors a reality in New York City’s subway. Now I do not know if political pressures will be present because of all the other hot topics in today’s politics including gun control and health care. The rationale behind having the L train with Platform Screen Doors is that this is the only independent line in all of the subway system. So, it makes the most sense to have the doors installed at these stations. However, some of the problems that they may run into are retrofitting each individual station with these doors. This will ultimately cost millions depending on each station and how long these stations stretch.

Once again, the MTA are talking about Platform Screen Doors in our stations. But, this time around, it seems to be more serious. Almost every single innovation or renovation to the subway system has been tested on the L line because of the fact that the L train is the only train that runs through it. The fact that it would cost a billion dollars to have the whole subways system fitted with platform screen doors is an alarming number. However, if the federal and state government were to shift funds around, it would become completely feasible. With the whole political pressure aspect of the article, I disagree to an extent because I feel like there are more important matters at hand in terms of politics. The Newtown gun massacre has taken a spotlight in recent weeks in terms of gun control. In the future, the government may shift its focus on Platform Screen Doors. But, it would probably be on a more national scale. The plan for Platform Screen Doors seems to coming to fruition after a few years of “planning”. This is in the midst of a lawsuit between MTA and the family of a man who was thrown to his death on the tracks.

This entry was posted in Annotated Bibliography. Bookmark the permalink.